User Guide

Novoptel

LU1000 Laser Unit

Novoptel GmbH Helmerner Weg 2 33100 Paderborn Germany www.novoptel.com

Revision history

Version	Date	Remarks	Author
0.1.0	28.02.2025	Draft version, referring to firmware 1.0.2.3	B. Koch

Table of contents

Operation of the instrument using the front control panel	. 4
Operation of the instrument via graphical user interface	. 5
First steps with the GUI	. 6
Operation of the instrument using register access	. 8
Access the USB driver	. 8
Support for Matlab	. 8
Support for Python	. 8
Operation of the instrument using other programs	. 8
USB Settings	. 9
USB Transfer protocol	. 9
TCP/IP (LAN) Communication	10
TCP/IP Settings	10
TCP/IP Transfer protocol	10
Operation of the instrument using SPI	11
Register address coding	13
Common registers	13
Laser control registers (ITLA)	14
Laser control registers (DFB modules)	14
Firmware upgrade	15

Operation of the instrument using the front control panel

Power the instrument with the provided power supply and switch it on. The instrument provides a cyclical menu, which is shown on the OLED display at the front of the instrument. The control buttons *UP* and *DOWN* let you navigate through the menu. The control buttons *LEFT* and *RIGHT* change a selected setting.

Menu structure and description

L1: 191.5000THz	Select one of up to 4 lasers. The selected laser 1 is also indicated				
Sel. Laser: 1 \leftarrow	by 'L1' in the upper row.				
L1: +10.0dBm	Enable or disable the least				
Enabled \leftarrow					
L1: +10.0dBm	Set the target power of the lager				
Target:+10.0dBm←	Set the target power of the laser.				
L1:StartFreq:	Set the start frequency of the laser. This refers to the frequency of				
191.5000THz←	channel 1.				
L1:StartWLen:	Set the start wavelength of the laser. This refers to the wavelength				
1565.29nm←	of channel 1.				
L1: 191.5000THz	Select the laser channel. Increasing the channel number by 1				
Channel: 001 \leftarrow	increases the laser frequency by one step on the grid.				
L1: 191.5000THz	Set the grid spacing. Minimum grid spacing depends on laser				
Grid: 0.1000THz←	properties.				
L1: 191.5000THz	Fine-tune the laser frequency in MHz-steps. Availability depends				
FTune: 00000MHz←	on laser properties.				
L1: 191.5000THz	Disable the control loops of the laser to reduce AM and FM noise.				
Whispermode:OFF \leftarrow	Availability depends on laser properties.				
Configure LAN \leftarrow	Enter LAN menu to set IP address, gateway address and subnet				
Save Configur.	mask.				
Configure LAN	Save the current configuration (including LAN settings) of the				
Save Configur. \leftarrow	LU1000.				

The menu point *Configure LAN* is missing if the unit is not equipped with a LAN interface

Operation of the instrument via graphical user interface

The instrument communicates by a USB IC FT232R from FTDI (Future Technology Devices International Limited, http://www.ftdichip.com).

The Novoptel LU1000 Graphical User Interface (= GUI) is compiled on a Microsoft Windows 10 64 Bit system. It is recommended to set the DPI scaling to 100%.

Installing the USB driver

Normally this driver is already provided by the Windows system. If this is not the case, one can install the newest driver from https://ftdichip.com/drivers/d2xx-drivers/

Connecting the instrument

After the driver is installed successfully, connect PC and instrument using the provided USB cable. Power the instrument with the provided power supply and switch it on. Wait until Windows has recognized the USB device and shown an acknowledgement message.

Installing the GUI

New GUI versions for LU1000 will be published here:

https://www.novoptel.de/Home/Downloads en.php

The LU1000 xxxx.exe can be executed without installation.

5 of 15

First steps with the GUI

Novoptel LU1000 Laser Unit Interface X							
USB Device: LU1000-CC-A-D 000	10 V Refresh						
LAN Device: 192.168.1.11	Connect	Status: Connected					
Select Laser Module: 1	Module 1:	Show Device Info					
Tunable Laser Parameters: Min. Optical Power: +6,00 dBm Max. Optical Power: +15,50 dBm Min. Frequency: 191,50 THz Max. Frequency: 196,25 THz Start Frequency: 191,50 THz Min. Grid Spacing: 00,1 GHz Cur. Grid Spacing: 50,0 GHz Max. Channel Nr.: 96 Laser Temperature: 32,02 °C	Channel Nr: 39 (39) Optical Power: +9,10 (+9,10) dBm Grid Spacing: 0.00 50,0 GHz Frequency Shift (MHz): 0 (0) Whisper Mode: 0 (0)	Set _ + Set _ + Set _ + Set					
<u>DFB Laser Parameters:</u> Frequency: 000.00 THz Max. Current: 104 mA Min. Temperature: 9 °C Max. Temperature: 45 °C	Current: 0.00 (0.00) mA Temperature: 0.000 (0.000) °C	Set _ +					
Laser 1 Disabled - inf. dBm 193,4000 THz (1550,12 nm)	Laser 2 Disabled - inf. dBm 193,4000 THz (1550,12 nm)						
Laser 3 Disabled +0 dBm 000.0000 THz (000.00 nm)	Laser 4 Disabled +0 dBm 000.0000 THz (000.00 nm)	Close					

Selecting one of the instruments attached via USB or LAN

If you have attached only one Novoptel laser unit by USB, the GUI automatically selects this one. If you have attached more than one laser unit by USB, select the desired one from the drop-down list.

USB Device:	LU1000-CC-A-D 00010		~	Refresh
LAN Device:	192.168.1.11	Connect		

If a connected instrument does not appear in the list, click the *Refresh* button. Subsequently, you can launch further instances of the GUI and connect them to further instruments.

To connect to an instrument within the same LAN, type the instrument's IP address into the field next to *LAN Device* and click *Connect*. You can change the instruments network settings using the front buttons.

Selecting one of the laser modules

If the LU1000 is equipped with more than one laser module, you can select one of them by increasing or decreasing the number box:

Select Laser Module:	1 🌲	Module 1:
----------------------	-----	-----------

The displayed properties will be updated according to the selected laser module.

Changing the settings of a tunable laser module

The laser module parameters are displayed on the left side. On the right side, the user can modify channel number, optical power and grid spacing. For changing the grid spacing, the laser must be disabled first.

Tunable Laser Parame	eters:	Channel Nr: 39 (39) Set _ +
Min. Optical Power: Max. Optical Power: Min. Frequency:	+6,00 dBm +15,50 dBm 191,50 THz	Optical Power: +9,10 (+9,10) dBm Set _ Grid Spacing: 0.00 50,0 GHz Set
Max. Frequency: Start Frequency:	196,25 THz 191,50 THz	Frequency Shift (MHz): 0 (0) Set
Min. Grid Spacing: Cur. Grid Spacing: Max. Channel Nr.:	50,0 GHz 96	Whisper Mode: 0 (0) Set
Laser Temperature:	32,00 °C	

If the Start Frequency is changed using the front buttons, the GUI must be closed and opened again to recognize the new value.

The availability of *Frequency Shift* and *Whisper Mode* depends on the laser module properties. To enable or disable the whisper mode, write 1 or 0 into the field and click *Set*. To shift the laser frequency, enter a value in MHz into the field and click *Set*. The maximum frequency shift is ±30,000 MHz. Currently, negative values must be entered as 2¹⁶-value, e.g. a frequency shift of -1,000 MHz must be entered as 64536.

Enabling and disabling a laser module

The current states of all up to 4 laser modules are shown at the bottom of the Gui window.

The laser module can be enabled/disabled by clicking into the red/green field.

Novoptel

7 of 15

LU1000_UG_0.1.0_k01.docx

Operation of the instrument using register access

The instrument is controlled by reading from and writing to internal control registers. The register address line is 12 bits wide, while each register stores 16 bits. The connection host, e.g. the program running on the connected PC, initiates all communication.

Access the USB driver

The USB driver (FTDI D2XX) must be installed on your system and the laser unit needs to be connected using a USB cable.

Support for Matlab

Novoptel provides a Matlab class (LU1000.m) with functions for LU1000 as well as precompiled MEX files for register operations via USB or LAN. The archive Matlab_Support_Files.zip is available at the top of page https://www.novoptel.de/Home/Downloads_en.php.

Support for Python

Novoptel provides a Python class (PyEps.py or EPS.py) with functions for EPS1000 via USB or LAN. The functions can be modified for LU1000 by reading and writing to the registers known from the Matlab examples.

The archive EPS_Python_Example.zip is available at the top of page <u>https://www.novoptel.de/Home/Downloads_en.php</u>.

Operation of the instrument using other programs

The USB vendor FTDI provides examples for USB access using other programs, for example LabVIEW® here: https://ftdichip.com/software-examples/code-examples/

Novoptel

USB Settings

The following settings must be applied to enable USB communication:

Baud Rate	230400 baud
Word Length	8 Bits
Stop Bits	0 Bit
Parity	0 Bit

To speed up sequential read and write operations, we recommend setting:

USB Latency Timer 2 ms

USB Transfer protocol

Writing to a register requires a 9 byte data packet. Each byte represents an ASCII-coded character. The packet starts with the ASCII-code 0x57 (for "W") and ends with the ASCII-code 0x0D for *carriage return*.

Send write data packet

"W"	A(2)	A(1)	A(0)	D(3)	D(2)	D(1)	D(0)	^CR
-----	------	------	------	------	------	------	------	-----

The 12 bit register address A is sent using 3 bytes, each containing the ASCIIcharacter of the hexadecimal numbers 0 to F which represents the 4 bit nibble. The character of the most significant nibble is sent first. The 16 bit data, which should be written into the register, is sent with 4 bytes using the same coding as the register address.

Reading data from a register requires the host to send a *request data* packet to the instrument. The packet starts with the ASCII-code 0x52 (for "R"), followed by the register address coded the same way as in *write data* packets.

Send request data packet

"R" A(2)	A(1)	A(0)	"0"	"0"	"0"	"0"	^CR
----------	------	------	-----	-----	-----	-----	-----

After receiving the *request data* packet, the instrument sends the requested data packet to the host:

D(3)	D(2)	D(1)	D(0)	CR
------	------	------	------	----

TCP/IP (LAN) Communication

The user can set the IP address, gateway and subnet mask via the front buttons. After the next power-up, the LU1000 will open a TCP/IP socket using the entered settings and wait for a connection.

TCP/IP Settings

Port	5025
Input buffer	8192 Bytes

TCP/IP Transfer protocol

write data packet

In contrast to USB communication, writing to a register via TCP/IP requires only a 5 byte data packet. The packet starts with the ASCII-code 0x57 (for "W").

"W"	A(118)	A(70)	D(158)	D(70)
-----	--------	-------	--------	-------

The 12 bit register address is sent first in two bytes, followed by the 16 bit register data in another two bytes.

Reading data over TCP/IP requires the program to send a *request data* packet of 3 bytes to the instrument. The packet starts with the ASCII-code 0x52 (for "R"), followed by the register address coded the same way as in *write data* packets.

Send request data packet

"R"	A(118)	A(70)
-----	--------	-------

After receiving the *request data* packet, the instrument sends the requested data packet to the host:

D(1)

Operation of the instrument using SPI

The SPI allows communication with a simpler protocol and shorter delays than USB. The SPI connector at the backside of the device provides the following connection:

Transmission starts with falling edge of CS and ends with rising edge of CS. After falling edge of CS, the command is transmitted. SDI is sampled with rising edge of SCK. Maximum SCK frequency is 500 kHz. Command and data word length is 16 bit each. MSB of command and data word is sent first, LSB last. If a valid *register read* (RDREG) command is received, the SDO output register shifts with falling edge of SCK to transmit the requested data word. Otherwise SDO remains in high impedance state. Data transfer to the device continues directly after transmitting a *register write* (WRREG) command.

Serial interface (SPI) commands

Each SPI register has 16 bit. Upon power-on, all registers are reset to default. The upper 4 bit can be 0h (read) or 1h (write). The lower 12 bits are the control register address.

Command	Code	Data	Function
RDREG	0XXXh	OUT	Read control register XXXh (for definition see below)
WRREG	1XXXh	IN	Write control register XXXh (for definition see below)

LU1000 User Guide

Serial interface (SPI) timing

Fig. 1: Timing of SPI port.

Symbol	Description	Min	Max	Units
TCSCK	CS low to SDCK high	120	_	ns
Tckcs	SDCK low to CS high	120	_	ns
TSDCKL	SDCKL low time	1	_	μs
TSDCKH	SDCKL high time	1	_	μs
TSETUP	SDI egde to SDCK high (setup time)	30	_	ns
THOLD	SDCK to SDI edge (hold time)	30	_	ns
Тско	SDCK edge to stable SDO	_	100	ns

Register address coding

Bits	Function
1110	Reserved. Leave "00".
97	"000": Common registers
	"001": Laser 1 registers
	"010": Laser 2 registers (optional)
	"011": Laser 3 registers (optional)
	"100": Laser 4 registers (optional)
60	Register address 0127

Common registers

Register	Name	Bit(s)	Read/	Function
address			write	Internal clarm and a The clarm can be cleared by writing
0				"O" to this register. This is successful only if the alarm
				condition is no longer present
		0		thd
		1		tbd.
		2		tbd.
		2		Critical temperature
1	BUSV	4	D	"1": Controllor modulo is busy
2	BUST NLAS	15 0		I . Controller module is busy
2		150		(default) - Enable internal register undete
19		0	R/VV	
20		10		Pate word for external register access
21	WRDATA	150	VV	Data word for external register access
22	WRIRIG	0	VV	"1": External write operation on registers of laser 1.
		1	VV	"1": External write operation on registers of laser 2.
23	RDADDR	70	VV	Read address for external register access
24	RDTRIG	0	VV	"1" triggers read operation on all installed lasers.
25	DOUT1	150	R	Data word read from laser 1
26	DOUT2	150	R	Data word read from laser 2
27	RES			Reserved
28	DOUT3	150	R	Data word read from laser 3
29	DOUT4	150	R	Data word read from laser 4
51	TMPR	150	R	Controller board temperature in Celsiusx16
64	FW	150	R	Firmware version as 4 digit BCD
65	SN	150	R	Controller board serial number
68	MODTYP	150	R	Module Type as 32 character string. Beginning at
				512+144, each Register contains two bytes,
83				representing two ASCII-coded characters.
85	DDNA1	150	R	Device DNA word 3 (DNA bits 6348) (same as read
				via JTAG)
86	DDNA2	150	R	Device DNA word 2 (DNA bits 4732) (same as read
				via JTAG)
87	DDNA3	150	R	Device DNA word 1 (DNA bits 3116) (same as read
				via JTAG)
88	DDNA4	150	R	Device DNA word 0 (DNA bits 150) (same as read
				via JTAG)

Novoptel

Laser control registers (ITLA)

Register	Name	Bit(s)	Read/	Function
address			Write	
0	NOP	158	R	Pending Operation Flags. 0 indicates that there are no
				currently pending operations
		4	R	"1" indicates that the module is ready for its output to be
				enabled
		30	R	Error condition according to OIF-ITLA-MSA-01.0
1	LBUS	1	R	"1": Serial interface of laser is busy.
		0	R	"1": Serial interface of laser is has a timeout exception.
48	Channel	150	R/W	Sets or returns the laser module's current channel.
49	PWR	150	R/W	Sets or returns the laser module's current optical power
				in dBm*100
50	ResEna	150	R/W	Sets or returns the laser module's current status.
				Supported commands:
				0x00: Laser output disabled
				0x08: Laser output enabled
52	GRID	150	R	Grid spacing in GHz*10
53	FCF1	150	R	First channel's frequency, THz
54	FCF2	150	R	First channel's frequency, GHz*10
64	LF1	150	R	Returns channel's frequency as THz
65	LF2	150	R	Returns channel's frequency as GHZ*10
66	OOP	150	R	Returns the optical power encoded as dBm*100
67	CTemp	150	R	Returns the current temperature encoded as °C*100.
80	OPSL	150	R	Minimum possible optical power setting
81	OPSH	150	R	Maximum possible optical power setting
82	LFL1	150	R	Laser's first frequency, THz
83	LFL2	150	R	Laser's first frequency, GHz*10
84	LFH1	150	R	Laser's last frequency, THz
85	LFH2	150	R	Laser's last frequency, GHz*10
86	LGrid	150	R	Laser's minimum supported grid spacing, GHz*10
98	FTune	150	R/W	Fine tuning of laser frequency in MHz steps*) ("FTune"
				on display; "Frequency Shift" in GUI)
108	Whisper	150	R/W	0x0000: disable, 0x0002: enable whisper mode*)

*) only applicable if supported by laser module

Laser control registers (DFB modules)

Register address	Name	Bit(s)	Read/ Write	Function
23		150	R/W	Laser temperature in Celsius*1000.
24		150	R/W	Laser current in mA*100
25		15	R	Error flag of laser temperature controller
		15	W	"1" resets error flag
		1412	R	Reserved
		110	R	Value of ADC1 (temperature)
26		150	R	Value of ADC2 (photocurrent)
27		130	R	Value of DAC1 (temperature)
28		130	R	Value of DAC2 (laser current)
29		150	R	Optical power in mW*1000
30		150	R	Optical Frequency in THz*100
31		150	R	Optical power in dBm*1000

LU1000 User Guide

Firmware upgrade

Via the JTAG port the user can upgrade the firmware, if ever needed. Note that the upgrading firmware must be obtained from Novoptel to avoid incompatibilities. An application note for firmware upgrading is available at the bottom of page https://www.novoptel.de/Home/Downloads_en.php.

