First Endless Optical Polarization and Phase Tracker

B. Koch(1,2), R. Noé(1,2), V. Mirvoda(1), D. Sandel(1)

1) Universität Paderborn

2) Novoptel

Germany
Application areas for simultaneous polarization & phase control/tracking

- If phase difference of controlled polarization and its orthogonal is also controlled, then the whole normalized Stokes vector space will be stabilized.

- For the BB84 protocol of quantum communication, 0°/90° and 45°/-45° linear polarizations must be preserved.

- Phased arrays require polarization control & absolute phase control in each tap or channel.
Control principle with 3 degrees-of-freedom

Not only 1 polarization C_1 is to be transformed into S_1 but simulataneously a 2nd, „semi-orthogonal“ polarization C_2 into S_2.

To achieve this, the phase shift between C_1 and its orthogonal polarization $-C_1$ must be controlled in addition to the polarization transformation of C_1.

Solution: By rotation about R, C_1 is turned via a into S_1 and C_2 via a' into S_2.

Conventional, not sufficient: $b...e$ also turn C_1 into S_1, but C_2 is transformed into $P_b...P_e$, hence anywhere on the S_2-S_3 great circle.
Setup for polarization & phase control (3 degrees-of-freedom)

- Lasers: f [THz]
 - 193.8: 0° (control)
 - 194.0: 45° (control)
 - 193.9: variable (probe)

- Polarization scrambler Novoptel EPS1000
- LiNbO$_3$ polarization transformer
- FPGA-based controller
- PBS + photodiodes
- DEMUX
- Polarimeter

- 2 „semi-orthogonal“ control signals required
- 2 feedback signals: Signal intensities behind 2 polarizers

![Graphs]

- Feedback signal without control
- Feedback signal with control switched on
Complementary cumulative distribution function $1-F(\text{RIE})$ of relative intensity error (RIE) for different scrambling speeds.

- No light
- RIE0°, 0.1 krad/s
- RIE0°, 20 krad/s
- RIE45°, 0.1 krad/s
- RIE45°, 20 krad/s

Polarization and phase tracking at 0.1 krad/s and 20 krad/s.

RIE45°, 0.1 krad/s, 45° control signal polarization intentionally misaligned.

50 MS/s polarimeter.
Poincaré sphere displays of probe signal, set to 6 polarizations on normalized Stokes space axes

Conventional polarization control

Polarization & phase control, 0.1 krad/s

Polarization & phase control, 20 krad/s

As per $1-F(RIE)$:

max mean errors [rad] of 0° control signal

0.08 rad

0.04 rad

0.12 rad

0.06 rad
Discussion, Conclusion

- Portation and preservation of Stokes space from transmitter to receiver
- Polarization & phase reliably stabilized even at 20 krad/s polarization scrambling:
 0.12 rad max, 0.06 rad mean error
- Errors at low scrambling speed:
 0.08 rad max, 0.04 rad mean
- Probe polarization error at low scrambling speed dominated by PMD (25 fs + 30 fs \Rightarrow up to 0.035 rad)

Applications
 - Phased arrays with polarization & absolute phase control
 - BB84 protocol of quantum communication