First Endless Optical Polarization and Phase Tracker

B. Koch^(1,2), <u>R. Noé^(1,2)</u>, V. Mirvoda⁽¹⁾, D. Sandel⁽¹⁾

2) Novoptel

Germany

Application areas for simultaneous polarization & phase control/tracking

- If phase difference of controlled polarization and its orthogonal is also controlled, then the whole normalized Stokes vector space will be stabilized.
- For the BB84 protocol of quantum communication, 0°/90° and 45°/-45° linear polarizations must be preserved.
- Phased arrays require polarization control & absolute phase control in each tap or channel.

Control principle with 3 degrees-of-freedom

- Not only 1 polarization C_1 is to be transformed into S_1 but simulataneously a 2nd, "semiorthogonal" polarization C_2 into S_2 .
- To achieve this, the phase shift between C_1 and its orthogonal polarization $-C_1$ must be controlled in addition to the polarization transformation of C_1 .
- Solution: By rotation about R, C_1 is turned via a into S_1 and C_2 via a^4 into S_2 .

Conventional, not sufficient: *b...e* also turn *C*₁
 into *S*₁, but *C*₂ is transformed into *P*_b...*P*_e,
 hence anywhere on the *S*₂-*S*₃ great circle.

Univ. Paderborn, Novoptel R. Noé 4

Setup for polarization & phase control (3 degrees-of-freedom)

- 2 "semi-orthogonal" control signals required
- 2 feedback signals: Signal intensities behind 2 polarizers

Univ. Paderborn, **Novoptel** R. Noé 5

Complementary cumulative distribution function 1-*F*(*RIE*) of relative intensity error (*RIE*) for different scrambling speeds

Univ. Paderborn, **Novoptel** R. Noé 6

Poincaré sphere displays of probe signal, set to 6 polarizations on normalized Stokes space axes

Conventional polarization control

Polarization & phase control, 0.1 krad/s

Polarization & phase control, 20 krad/s

As per 1-*F*(*RIE*): max mean errors [rad] of 0° control signal

0.08 rad 0.04 rad 0.12 rad 0.06 rad

Discussion, Conclusion

- Portation and preservation of Stokes space from transmitter to receiver
- Polarization & phase reliably stablilized even at 20 krad/s polarization scrambling:
 0.12 rad max, 0.06 rad mean error
- Errors at low scrambling speed:
 0.08 rad max, 0.04 rad mean
- Probe polarization error at low scrambling speed dominated by PMD (25 fs + 30 fs ⇒ up to 0.035 rad)
- Applications
 - Phased arrays with polarization & absolute phase control
 - BB84 protocol of quantum communication

