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 
Abstract—We formulate the concatenation properties of 

polarization-dependent loss (PDL) based on extinction rather 
than linear units. The advantage of this is that corresponding 
PDL vectors, defined with length proportional to extinction, can 
be added with much better accuracy than the traditional linear 
ones, in particular when PDL is of non-negligible quantity. We 
also describe either two concatenated PDL elements or a general 
constant optical element as a combined PDL element and a 
retarder, thereby obtaining not only input- but also output-
referred PDL vectors.   

We then propose to model a general optical transmission 
medium by the concatenation of many differential group delay 
(DGD) and PDL sections and retarders. An inverse scattering 
algorithm is provided which allows this physical structure to be 
obtained from the Jones matrix impulse response. 
Experimentally, we obtain the latter from the Mueller matrices 
measured in the optical frequency domain. The finally resulting 
distributed device structure is displayed in DGD and PDL 
profiles.  

The covariance matrix of the normalized Stokes vectors of 
scrambled polarizations equals 1/3 times the identity matrix. 
Based on this, we present yet another PDL measurement 
technique, the sqrt(3) scrambling method. It needs no 
polarimeter and determines low PDL values with better accuracy 
than the gradient search based extinction method. 
 

Index Terms—Optical fiber communication, optical fiber 
polarization, polarization-dependent loss, polarization mode 
dispersion 

I. INTRODUCTION  

OLARIZATION-dependent loss (PDL) is a fundamental 
property of optical devices and can not completely be 

avoided in fiberoptic communication links.  
N. Gisin [1] has given the interesting concatenation rules of 

PDL, based on linear PDL vectors. C. Vinegoni et al. [2] have 
given separate concatenation rules for the linear PDL units and 
the transmitted polarization. The same or equivalent PDL 
vector definitions have been used in [3-6].   

A major disadvantage of PDL vectors based on linear units 
                                                           

Manuscript received August 12, 2014; revised November 11 and 
December 22, 2014; accepted December 22, 2014.  

R. Noé, B. Koch, D. Sandel and V. Mirvoda are with University of 
Paderborn, EIM-E, Warburger Str. 100, 33098 Paderborn, Germany (phone: 
+49 5251 605823, fax: +49 5251 605827, e-mail: noe@upb.de, 
koch/sandel/mirvoda@ont.upb.de).  

R. Noé and B. Koch are also with Novoptel GmbH, EIM-E, Warburger Str. 
100, 33098 Paderborn, Germany. 

Copyright (c) 2013 IEEE. Personal use of this material is permitted.  
However, permission to use this material for any other purposes must be 
obtained from the IEEE by sending a request to pubs-permissions@ieee.org. 

is that they can be added in the normalized Stokes space only 
if PDLs are small. In the case of medium and large PDLs the 
PDL vector addition fails completely when it predicts infinite 
or complex extinction.  

In [5-7], an alternative PDL vector based on extinction units 
or its derivative with respect to the propagation coordinate are 
defined. Differential vector equations are also presented. 
However, no concatenation rule for extinction-based PDL 
vectors is given. The possibility of expressing extinction-
based PDL vector components in dB is pointed out in [8]. 

In Section II. we use PDL vectors proportional to extinction 
units and give their concatenation rule. They concatenate 
much more gracefully than those based on linear units. In 
particular, the addition of arbitrarily large extinction-based 
PDL vectors with equal or opposite directions yields the exact 
result.  

We describe two concatenated PDL elements as the 
combined PDL element plus a retarder, whose parameters are 
given. In this occasion not only input- but also output-referred 
PDL vectors are obtained. Furthermore, a general constant 
optical element is decomposed into the same structure plus a 
polarization-independent loss element. 

The polarization mode dispersion (PMD) or differential 
group delay (DGD) vectors of concatenated devices can be 
added in the normalized Stokes space. The sum vector gives 
the total DGD of the cascade. The vectorial addition can be 
displayed in a DGD profile [9, 10]. The DGD profile can be 
determined, together with retarders in between the DGD 
sections, by measuring the Mueller matrix vs. optical 
frequency, determining the corresponding Jones matrices, 
Fourier backtransforming the Jones matrix spectrum into the 
time domain and inverse scattering [11, 12] of one column 
vector of the resulting matrix impulse response. Many authors 
have stated that PMD and PDL are interwoven in typical 
transmission links. In Section III. we therefore modify the 
method to an inverse scattering of the full matrix impulse 
response. That way also the PDL of each DGD section is 
determined. Just like the DGD vectors, the PDL vectors can be 
displayed in a PDL profile. Unless PDL is small, it is 
important to use extinction-based PDL vectors here because 
their sum is a good approximation of the total PDL vector, a 
much better one than when the traditional linear PDL vectors 
are used. Experimental results are given for this distributed 
PDL and DGD measurement technique.  

DGD and PDL profiles give graphical information about the 
structure of the optical path, not just about its behavior (in 
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frequency or time domain). Only a knowledge of the structure 
permits, e.g., elimination of high-PDL or high-PMD sections. 
To measure only PDL at one optical frequency, several input 
polarizations must be applied to the device under test [13, 14]. 
In the Jones, Mueller or Mueller-Jones matrix methods [13-
19] the output polarizations are measured polarimetrically and 
the input polarizations are known or are likewise measured. 
PDL is thereby determined fast. Non-polarimetric techniques 
with mere intensity measurements also exist. Random 
polarization scrambling with recording of the intensity 
maximum and minimum is known as the scanning or all-states 
method [19, 20]. For very high PDL extinctions it needs to run 
for a relatively long time. Very low values are quite 
susceptible to measurement noise because most intensities are 
discarded; only two (or a small subset) are being used.  

The maximum-minimum search method [21, 22] changes 
polarization transformer settings in a trial-and-error process 
toward the intensity extrema, which yields PDL. The 
limitation here is that large steps usually make the user miss 
the true intensity maximum or minimum whereas small steps 
make it difficult or impossible to discriminate between two 
intensities, of which only one is correct. This impedes the 
search progress. 

We go in equal steps to either side of the operation point 
and thus introduce intensity gradients measured at the 
operation point into PDL measurement. We call this the 
extinction method. The strategy is well known from optical 
polarization control [23], where the intensity is maximized or 
minimized based on such gradients.   

In Section IV. we furthermore propose the sqrt(3) 
scrambling method, based on the known correlation properties 
of scrambled polarizations. We compare the sqrt(3) 
scrambling against the extinction method experimentally.   

Section V. summarizes and concludes this paper.   
Regarding notation, we write vectors and matrices in 

boldface. The tilde (e.g., Γ
~

 vs. Γ ) denotes output- rather than 
input-referred vectors. The dish-shaped overnotation indicates 

the 33 rotation matrix ( W


) of a retarder inside the 
corresponding Mueller matrix (W). 

II. PDL CONCATENATION, DEFINITION, DECOMPOSITION 

The traditional [1-6] linear PDL unit lΓ  ( Γ  in [1]) and 

associated linear PDL vector lΓ
~

 (Γ  in [1]) are 

ll TT

TT
Γ Γ

~

minmax

minmax 



 ,            VΓ
~~

ll Γ , (1) 

where subscript l stands for linear, maxT , minT  are the power 

transmissions of the strongest and weakest polarization, 

respectively, and V
~

 is the normalized Stokes vector of the 

strongest polarization. Gisin’s concatenation rule [1] for 

subsequent devices 1, 2 with linear PDL vectors 1,
~

lΓ , 2,
~

lΓ  

can be written as 
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Here, lΓ
~

 is a linear PDL vector of the cascade and T means 

transpose. 
Vinegoni [2] also gives a concatenation rule for a linear 

PDL vector 1212 pl pΓ  . Using the auxiliary equations 

  11111 21 pp  ppa ,  111 2apa  , it can be 

calculated from the linear PDL vectors of the individual 
devices, 

 211122112

212112

2 paappp

pp




pp

ppp T
. (3) 

PDL can also be expressed in decibel: PDL [dB] = 
 minmaxlog10 TT .  

We find it useful to work with the extinction unit  
(called ja  in [5, 6]), given by 

min

maxln
2

1

20

10ln
[dB] PDL

T

T
 ,   lllΓ ΓΓ

~
tanh  . (4) 

Based on  we define the input-referred PDL vector VΓ   

(called jα  in [5, 6]) and  the output-referred PDL vector 

VΓ
~~

 . Their derivative (called  zα ) with respect to the 

propagation coordinate has been used in [5-7]. This is 
analogous to the definition of input- and output-referred PMD 
vectors [24, 25]. It holds  
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Analogous equations allow transforming between Γ
~

 and lΓ
~

.  

The Jones matrix of a partial polarizer with eigenvalues 
2

2,1
  e  ( 0 ) and orthogonal eigenvectors 
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J is Hermitian. The corresponding symmetric Mueller matrix 
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M  (7) 

with elements ijM  (i, j = 0...3) has eigenvalues e  

(= maximum and minimum power transmissions maxT , minT , 

here with a geometrical average minmaxga TTT   equal to 1) 

for Stokes eigenvectors  TVS  1  (  TVVV 321V ), 

i.e. for the strongest/weakest polarizations. Input- and  output-
referred PDL vectors are identical here because M is 

symmetric.  
To investigate PDL concatenation, we let the light pass 

through a first and a second partial polarizer with Mueller 
matrices iM  ( 2,1i ) of type (7), associated i   and 

 Tiiii VVV 321V . Their product 1221 MMM   (8) 

characterizes the cascaded partial polarizers. It can be 
decomposed as another matrix product WMM 21 . Matrix 

M of type (7) stands for a combined partial polarizer whose 
extinction unit and strongest polarization shall be derived in 

the following. Quantity 





W0
0W 1 , with W


 being a 33 

rotation matrix, is the Mueller matrix of a retarder. Its  0th line 
is  0001 . So, the 0th line of 21M  (or any other matrix 

which can be factorized as WM) is identical to that of M. By 
equating the 0th lines of (8) and (7) one ends up with 
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 

  1coshsinhsinhcosh

sinh
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sinhsinhcoshcoshcosh
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MMM

M

, (9) 

  
121212

121212122

sinhsinhcoshcosh

1coshsinhsinhcoshsinh

tanh






VV

VVVV

V

T

T






     

 (10) 

and subsequently V (=    tanhtanh VV ) and 

  (= tanhatanh V ).  

Without loss of generality we can assume 01  , 02  , 

0  because negative signs could be taken into account by 

changing the polarity of 1V , 2V , V. Using 0sinh 2  , 

22 sinhcosh   , 1sinh  1cosh 1    we see that the 

factors by which 1V , 2V  are multiplied to form sinhV  (9) 

(or V) as their linear combination are both positive. So, V lies 
on a great circle of the Poincaré sphere in between 1V , 2V , 

i.e. on the shorter of the two possible circle segments between 

1V , 2V . 

When the input-referred PDL vector or corresponding 
normalized vector is fed into a device, then the output-referred 
one is generated, 







 e

V
~1 











V

WM
1 











 e
V

W
1

.  (11) 

As a consequence it holds VWV



~

, ΓWΓ



~

. This is 
obviously valid for any retarder matrix W, not just for the one 
we need in the decomposition of 21M .  

We can also factorize WMM
~

21   with TWMWM 
~

. 

The elements of M
~

 are ijM
~

. Given that the 0th column of W 

is  T0001 , the 0th column of 21M  (or any other matrix 

which can be factorized as WM
~

) equals that of M
~

. One 
obtains  

 

 















1coshsinh

sinhcosh
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~~~
sinh

~
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302010
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

VV
VV

V

T

T
MMM

. (12) 

Since 21M  is not symmetric, V and V
~

 do not coincide. In the 

same manner as above, we can show that V
~

 lies on the 
shorter great circle segment between 1V , 2V .  

We can expand vector VV
~

  and will find that it is 

parallel, with the same sign, to vector 21 VV  . For 112 VVT  

we can furthermore show   sinh
~

1 VVV T 0 , 

  sinh
~

2 VVV T  0 . So, V, V
~

 lie, in this order, between 

1V , 2V  (order 1V , V, V
~

, 2V ). The eigenmodes of  the 

rotation submatrix W


 lie in a first plane defined by VV
~

 , or 

the parallel vector 21 VV  , and VV
~

 . 

For symmetric M (7) with arbitrary input polarization, 
given by the normalized Stokes vector S, one obtains 

   












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



SSVV
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SM

1coshsinh

sinhcosh1




T

T
.  (13) 

The output polarization (or, more precisely, its normalized 
Stokes vector) is a linear combination of S and V. The same 
way we calculate  

   1

1
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We define 









CVM 11
1

c , 









DVM 11
1

21 d  where c, d are 

constants. 1V , 2V , V, V
~

, C, D all lie in the same plane. It 

holds VWV



~

 and CWD


 . Hence the eigenmodes of W


 
must also lie in a second plane, defined by DC , or the 
parallel vector 21 VV  , and DC  .  

It is straightforward to show DVCV 
~

. This means the 
two planes have only one common line, 21 VV  . The 

eigenmodes of W


 are parallel to 21 VV  !  

In contrast, if the eigenmodes of W


 were not parallel to 

21 VV  , they would need to be parallel to VV
~

  and DC  . 

CV  would need to be equal to DV
~

, but this is not the 
case!  

So, to fulfill VWV



~

, the rotation matrix  
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 (15) 

turns normalized Stokes vectors about the eigenmode axis 

 TBBB 321B   VVVV
~~

    )( 2121 VVVV   

with a retardation angle   that is given by VVT~
cos  , 

VV
~

sin  ,   VVVV T~~
arctan  .  

An alternative, lengthy proof of the PDL concatenation rule 
can be led by inserting the given quantities into 
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WMMM 12 .   

Let us look at another configuration. If cascaded partial 
polarizers are separated by a retarder R, e.g. with the total 
matrix product 12RMMN  , then the PDL vectors and the 

symmetric partial polarizer matrices must all be transformed 

to the same location, input (   12 MRMRRN T ) or output 

(  RRRMMN T
12 ).  

For small PDL, matters are considerably simpler. In (9) and 
elsewhere one may set 1cosh i , iii  tanhsinh  , 

thus obtaining   

2211

2211
~~~ 



VVV

VVV




,    

21

21
~~~
ΓΓΓ

ΓΓΓ




         ( 1i ). (16) 

All the foregoing can be executed several times sequentially 
if more than two partial polarizers are cascaded. As 
exemplified above, all PDL vectors must be referred to the 
same location, i.e. they must belong to adjacent symmetric 
Mueller matrices. 

Transformation between extinction-based and linear PDL 
vectors is easy (5). This way one can make the earlier-given 
concatenation rules (2), (3) for linear PDL vectors usable for 
extinction-based ones. Remember that input- and output-
referred PDL vectors are identical only for symmetric Mueller 
matrices. We found that Gisin [1] returns the output-referred 

linear PDL vector lΓ
~

 (2) whereas Vinegoni [2] delivers the 

ingredients of the input-referred linear PDL vector 

1212 pl pΓ   (3).  

When the different definitions are considered, all 
concatenation rules (Gisin, Vinegoni, ours) deliver the same 
results. For small PDL, (2),  (3) can be replaced by a simple 

addition 2,1,
~~~

lll ΓΓΓ   or 2,1, lll ΓΓΓ  . However, due to 

1lΓ  (which follows from 0min T ) this gets 

catastrophically wrong for 12,1,  ll ΓΓ , and even for 

moderate PDL the error can be significant.  
Regarding the direct addition of PDL vectors, their 

definition based on the extinction parameter   is superior to 

the linear one if PDL is not small. The striking difference is 
illustrated in two examples:  

1) We take two equally oriented polarizers with extinction 
units 21, . Adding our PDL vectors 21,ΓΓ  (which is, in 

this case 21 VV  , the direct result of (9), (10)!) gives the 

correct 21 ΓΓΓ   and the correct extinction unit 

21   . Everyone knows indeed that the extinctions of 

cascaded polarizers can be added! However, the addition of 
the corresponding linear PDL vectors rather than the 
application of the correct concatenation rule gives, after back-
conversion, an extinction unit  21 tanhtanharctanh   , 

which differs from the correct value 21   . For individual 

extinctions as small as  21  0.213 (corresponding to 

1.85 dB) the relative extinction error which results from 

addition of linear PDL vectors reaches 5%, and it becomes 
infinite for modest  21  0.55 (corresponding to 4.8 dB). 

More generally, Fig. 1 shows the contours of the relative error 
     1tanhtanharctanh 2121    for arbitrary 

combinations of 21, . 

2) Consider two cascaded PDL elements of type (7) with 
equal extinctions of 7.7 dB, corresponding 21     0.886, 

and 0°/90° (  T0011 V ) and 45° (  T0102 V ) 

eigenmodes (= strongest/weakest polarizations). When adding 
our PDL vectors iii VΓ   according to (16) we get 

2,12  Γ   1.253 and a total extinction of 10.9 dB. 

This is only 5% off the correct value 11.5 dB calculated with 
(9), (10). In contrast, the addition of the corresponding 
traditionally defined PDL vectors [1, 2] iiil tanh, VΓ   with 

lengths itanh   0.709 predicts, after back-conversion, a 

complex (or, if one limits the argument of the arctanh, an 
infinite) extinction! 

Let us repeat that both PDL vector definitions are correct 
and are flanked by correct concatenation rules. The extinction-
based PDL vectors turn out to be advantageous (i.e. much 
more accurate) when one adds PDL vectors instead of 
properly concatenating them. This simple PDL vector addition 
will indeed be needed in the PDL profile plotting of Section 
III. For accuracy reasons we use extinction-based PDL vectors 
there.  

Returning to matrix decomposition, the 7 elements 
contained in the 0th line and 0th column of 21M  contain just 

5 degrees-of-freedom (DOF) for V (2 DOF), V
~

 (2 DOF),   

(1 DOF). From these, eigenmodes and retardation of W


 are 
derived. We therefore describe how a general constant 
element, whose Mueller matrix P has 7 DOF (= 8 DOF of a 
Jones matrix minus 1 DOF representing the common phase), 
can be expressed by a retarder (3 DOF), a PDL element of 
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Fig. 1. Contour plot of relative error (1 means 100%) resulting from linear 
PDL vector addition  21 tanhtanharctanh    vs. extinction-based PDL 

vector addition 21    for equally oriented partial polarizers. Extinctions 

21,  are given dimensionless in Neper (Np) and in dB. 
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type (7) (3 DOF) and a polarization-independent power 
transmission (1 DOF). For Jones matrices, this possibility was 
already pointed out in [6]. 

For Mueller matrix P, this starts with the singular value 
decomposition  

TUTVP   (17) 

which yields orthogonal matrices U, V and a diagonal singular 
value matrix T, containing transmissions. The elements of T 
are made non-negative and put in decreasing order. This is 
achieved by sign changes and reordering of the column 
vectors of U, V. Matrix T now contains the four non-negative 
singular values in decreasing order, namely maxT , gaT , gaT , 

minT . Two of these are identical and are the geometric 

average of the others, minminmaxgamax TTTTT  . 

The singular values maxT , minT  are indeed the power 

transmissions of the strongest and weakest polarization, 
respectively. We may choose the latter to be 0°/90° linear 
(along the 1S  axis). gaT  is also the transmission of two other 

Stokes parameters, here 2S  and 3S , which define a 

cartesian coordinate system for the Poincaré sphere together 
with the strongest/weakest polarization axis 1S . So the 

diagonal matrix T does not describe the transmission of a 
Stokes vector. Rather it describes the transmissions of the 

components 2
xE  (= power in x-component), 2S , 3S , and 

2
yE  (= power in y-component). We can express the Stokes 

vector through 


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

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S
S

  
L

    ( TLL 1 ) (18) 

with orthogonal L. In the equation 

 
102 ga RR

LV
M

LTLULP T

T

TT , (19) 

obviously the symmetric matrix 0gaMT  represents a partial 

0°/90° polarizer with geometric average power transmission 

gaT  and a 0M  conforming to (7) with 2
minmax eTT  , 

 T001V . The two orthogonal matrices 1R , 2R  must 

represent retarders. For the latter to be true, 
1detdet 21  RR  must hold. Even though the sign of 

1detdet  TVU  is usually undetermined, one can meet 
this condition by choosing either upper or lower sign in (18), 
which results in 1det L . The first row of the 33 rotation 
submatrix of type (15) inside 1R  is the normalized input-

referred PDL vector V, and the first column of the rotation 

submatrix inside 2R  is the normalized output-referred PDL 

vector V
~

.  
Now one may write 

 


retarder

12

pol. partial

202ga

pol. partial

101

retarder

12ga RRRMRRMRRRP TT TT   (20) 

which is the desired decomposition. The retarders are lossless, 
the partial polarizer matrices symmetric of type (7). We have 
numerically confirmed this decomposition procedure. 

III. DGD AND PDL PROFILES DETERMINED BY INVERSE 

SCATTERING 

Most authors express the PMD vector by a Taylor series 
[26]. This gives unphysical results (infinite PMD!) far off the 
carrier frequency. That effect is not surprising, because the 
PMD vector varies over frequency in a quasi-periodic manner, 
and a Taylor series is usually a bad approximation for periodic 
phenomena.  

In contrast, several DGD sections, which can be plotted in a 
DGD profile, are a physical and very effective description of a 
general PMD medium [9, 10]. The DGD profile graphically 
adds individual PMD vectors so that the sum represents the 
overall 1st-order PMD.  

The individual DGD sections are separated by retarders 
[27]. In later work this was called a hinge model [28]. It is 
important to note that only one of the retarders needs to be a 
general elliptical retarder [27]. Assuming DGD sections with 

1S  (= 0°/90°) eigenmodes the other retarders can be Soleil-

Babinet analogs (SBAs) [27], having eigenmodes which can 
be oriented freely on the 2S - 3S  great circle. They can also be 

called in-phase and quadrature mode converters. To get the 
rotation matrix of an SBA with retardation i  and orientation 

i  one sets i   and  Tii  sincos0B  in (15). The 

corresponding Jones matrix is given in the following eqn. (23). 
An inverse scattering process to determine these components 
from the optical vector impulse response has been outlined in 
[11, 12] and demonstrated in [9].  

Extending this model, we describe the transmission path in 
n + 1 steps by 

(0) Element with constant Jones matrix, 
(1)  DGD section followed by SBA and PDL,  
... 
(n)  DGD section followed by SBA and PDL.  

The i-th PDL element and the (i + 1)-th DGD section have 
the same orientation with 0°/90° eigenmodes and could, as a 
consequence, be exchanged. Together they form a partial 
polarizer and phase shifter with extinction parameter i  and 

retardation   . Moreover, a phase shifter, which is 
contained in the element of step (0), can be exchanged with a 
DGD section and also with an SBA if the orientation of the 
latter is changed by the phase shifter’s retardation [27]. So, the 
SBAs in the steps (1) to (n) could just as well be elliptical 
retarders.  
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Let ik  be an intermediate result after DGD, but before 

SBA, il  be an intermediate result after SBA but before PDL, 

and ih  be the matrix impulse response to the unity excitation 

matrix  t1 , each of these in or after the i-th step. Using g 

for h, k, l we write 
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g

. (21) 

The 1st and 2nd columns of g contain the vector responses 
to horizontal and vertical polarization impulses. The passing 
of the signal through the elements i > 0 is described by 
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Starting from  
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il (27) and ih  (28). 

For inverse scattering we let i run from n down to 1. Given 
that some elements can vanish in practice it is useful to weight 
them quadratically. The PDL parameter is given by 
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Knowing i  we can calculate 

  iii hl  PDL . (30) 

Furthermore we see 
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For weighting in (31) we consider  2sin i  

2
,,21

2
,,11,,11 iiiiii lll   etc. and evaluate  2sin i , 

 2cos i  by (32). This yields the SBA retardation i . With 

weighting, the SBA orientation is computed as 
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Using the SBA parameters one obtains 
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    iiii lh   ,SBADGD1 . (34) 

The final step provides us with 0h . For analysis of the 0th 

optical element with constant Jones matrix  dt0h  one can 

extract its eigenvalues and not necessarily orthogonal 
eigenmodes. One can also determine the corresponding 
Mueller matrix and factorize it according to (20). 

Experimentally it makes sense to limit i  or to set 0i  

when the elements of the outer matrices in ih  with indexes 

...,0,i and ...,i,i, or their determinant, are very small in 
magnitude and therefore contain significant relative errors. 
Also, if the maximum possible DGD is known, it is useful to 
limit the length n of the initial impulse response matrix nh  

appropriately before inverse scattering is started. 
The algorithm was tested experimentally. A tunable laser 

module (191.7...196.1 THz in 50 GHz steps) was connected to 
a polarization scrambler/transformer (Novoptel EPS1000), the 
device under test (DUT) and a 100 MS/s polarimeter 
(Novoptel PM1000), see Fig. 2. By applying several pre-
determined polarization states, the Mueller matrix of the DUT 
was determined as a function of optical frequency.  

To avoid detrimental artifacts of chromatic dispersion, the 
sign of a Jones matrix J was inverted if the dominating 

elements differed in phase by more than /2 with respect to 
those of the neighboring Jones matrix. For the same reason, 
we set   Jdetarg  to be the same for all J. The corresponding 

Jones matrix spectrum was windowed, Fourier-
backtransformed and 2-fold undersampled into the sequence 
of ih . Each DGD section was  = 455 fs long. This value 

equals the inverse of the total frequency scanning range, times 
2 because of undersampling. The available number of sections 
is determined by the number of tuning steps, divided by 2 
because of undersampling. The total DGD range (20 ps) 
equals the inverse of the tuning steps. After inverse scattering, 
input-referred DGD () and PDL () profiles of the DUT 
were plotted in the space of normalized Stokes vectors. These 
profiles contain, chained one after the other, the individual 
DGD or PDL vectors whose sum equal the total 1st-order 
PMD or approximately the total PDL, respectively. For 
accuracy reasons the extinction-based PDL vectors of Section 
II. are used. The angle between adjacent DGD or PDL 
sections represents the normalized Stokes vector rotation in 
the retarder separating the adjacent sections. 

In the following Figs., note that adjacent PMD or PDL 
vectors with equal lengths but opposite orientations cancel 
each other. The initial impulse response matrix can be 

Polarization
transformer

Tunable
laser

Novoptel EPS1000      Novoptel PM1000

DUT Polarimeter

 
Fig. 2. Setup for DGD and PDL profile measurement 
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Fig. 3. DGD profile of two randomly concatenated pieces of PMF with 4 and
6.6 ps of DGD. Not needed DGD sections, which fold up and thereby 
compensate each other pairwise, are marked by curved arrows.    
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Fig. 5. DGD profile of 7.6 dB polarizer with 750 fs of DGD    
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truncated in length if it contains only negligibly small 
elements at its edges and the resulting structural profiles are 
too messy. The input arrow denotes horizontal input 
polarization, and the output arrow denotes that input 
polarization which would be needed, when PDL was 
neglected, to excite a principal state-of-polarization of the nth 
PDL section or of a ficticious additional (n + 1)th DGD 
section.  

Two polarization-maintaining fiber (PMF) pieces with 4 ps 
and 6.6 ps of DGD were concatenated under random 
orientation. The resulting DGD profile (with PMD vector 
components 3...1  in ps) is shown in Fig. 3. Apparent are the 

straight DGD profile portions correspondig to these two PMF 
pieces. Only about 8 (3.64 ps) + 14 (6.37 ps) = 22 DGD 
sections are needed for these. However, more DGD sections 
are delivered by the inverse scattering algorithm. Those which 
are not needed fold up fairly accurately (see curved arrows) so 
that they compensate each other pairwise or make up for the 4 
ps rather than 3.64 ps DGD of one of the PMF pieces. The 
distance between the head of the input arrow and the tail of the 
output arrow is the total DGD. A reference measurement 
would show head of input and tail of output arrow glued 
together, and in between a double strand of DGD sections 
which cancel each other pairwise (see Fig. 13 of [9], without 
PDL considered). 

Fig. 4 displays the associated PDL profile (with extinction-
based PDL vector components 3...1 ). PDL was set to zero for 

impulse response matrices with determinant magnitudes 
< 2.510–5. Ideally, one would expect a neutral picture with 
nothing to be seen except input and output arrows. This is not 
the case. However, most local PDL vector excursions, 
probably caused by measurement errors, are compensated by 
adjacent opposite ones, similar to the DGD sections near the 
output arrow of Fig. 3. Total (approximated) PDL vector 
length between the head of input arrow and the tail of output 

arrow is close to 0 as expected, Γ  =   0.01. Input/output 

arrow directions are identical for DGD and PDL profiles. 
As another DUT, a piece of special PMF was chosen. When 

bent, it exhibited a PDL of 7.6 dB or   0.87. DGD was 750 
fs. To avoid profile overfill, we truncated the matrix impulse 
response to n = 6 before inverse scattering. Fig. 5 shows the 
DGD profile. The 2nd to 5th section mostly compensate each 
other. The total DGD between head of input and tail of output 
arrow was 750 fs as expected.  

Fig. 6 is the corresponding PDL profile. Here, too, the 2nd 
to 5th section mainly compensate each other. The 1st and 6th 
section have the same direction, thereby making up for the full 
device PDL. The total PDL measured vector length is 0.87 as 
expected. 

Closer inspection shows that the overall DGD vector in Fig. 
5 and the overall PDL vector in Fig. 6 are not far from being 
parallel (because PDL and DGD have equal eigenmodes along 
the DUT) with opposite signs.  

Note that the PDL of the special PMF depended somewhat 
on frequency. This could only be correctly represented by our 

structural model if the PDL change and a similar total DGD 
change were brought about by the frequency-dependent phase 
delays in the DGD sections. That was not the case here. 
Rather, frequency-dependent mode stripping determined PDL. 

IV. PDL MEASURED BY SQRT(3) SCRAMBLING METHOD 

We want to measure the PDL of a device under test (DUT). 
It has the Mueller matrix P with the elements 

jkP  (  3,2,1,0, kj ). Its output intensity is given by the 0th 

line of the Mueller matrix equation, oS ,0   ii
T SP ,000 Sp . 

Here, 3...0S  are Stokes parameters,   0321 SSSS TS  is 

a normalized Stokes vector, the additional indexes mean i for 
input, o for output, 00P  is the mean power transmission and  

the linear, not normalized PDL vector [2] is 

 TPPP 030201p . Here, we need to use a linear PDL 

vector because to get the variance of a quantity (= intensity 

within the limits eTga ), the quantity itself and not 

something like its logarithm () must be measured. Maximum 
and minimum output intensities are obtained in the cases 

iaSp   where 0a  is a proportionality constant. For fully 

polarized input light they assume the values 

  io SPS ,000,0 p  with ppp T . The PDL in dB is 

given through [dB] PDL
p

p





00

00
10log10

P

P

min

max
10log10

T

T
 . 

It is relatively easy to generate random polarization states of 
the input signal with a polarization scrambler. These states are 
needed for our PDL measurement method. The three elements 
of the normalized Stokes vector iS  of the random input 

polarizations are equidistributed in the interval  1,1 . They 

have zero mean and are uncorrelated. This means iS  is 

equidistributed on the Poincaré sphere; its covariance matrix is 
discussed below. For simplicity, we assume that iS ,0  and the 

elements of iS  are uncorrelated. As a consequence, the output 

intensity oS ,0  
features the expectation value 

io SPS ,000,0   and the variance 

 
2

,0
22

00
2

,0,0 i
T
ii

T
SS SP

io
pSSp  . (35) 

For constant iS ,0 , i.e. 0
,0


iS , the standard deviation is 

obtained as 
oS ,0


 i

T
ii

T S ,0 pSSp . It is bounded by 

iSs ,0min p
oS ,0

 iSs ,0max  p . Here, mins
, 

maxs  are minimum and maximum eigenvalues of the 

covariance matrix T
iiSS . Ideally, T

iiSS
 
equals 1/3 times 

the identity matrix [29], its eigenvalues coincide as 
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31maxmin  ss , and it holds iS S
o ,03

,0
 m . In 

the sqrt(3) scrambling method we calculate PDL in dB by 

o

o

So

So

S

S

,0

,0

3

3
log10[dB] PDL

,0

,0
10








 . PDL values that 

measured small in dB can fall in the range maxmin 3...3 ss  

times the true PDL in dB. Minimum and maximum loss in dB 

are    iSo SS
o ,0,010 ,0

3log10  . Note that the 3  

shows up already in eqn. (5) of [1], which points to the 
principle. 

The sqrt(3) scrambling method has been implemented. The 
PDL of the polarization scrambler should be mathematically 
eliminated by a reference measurement. Simultaneous 
intensity measurement at the output and at the input of the 
DUT requires a splitter with extremely low PDL. We have 
avoided this need by sequentially measuring intensity with 
DUT in place, and without DUT for reference. An 
optomechanical fiber switch, having an extremely low PDL, 
can facilitate this but we simply use connectors to insert the 
DUT. The sequential measurement of DUT and reference 

requires the PDL of the scrambler to be reproducible. In 
practice, the same polarizations must be used for DUT and 
reference measurements. 

Fig. 7 shows the setup. A 1550 nm and a 1300 nm laser are 
available. The laser signal is passed through the polarization 
scrambler. This test signal is connected to a photodiode, either 
directly or through the DUT. The photodiode is built into, and 
connected to the scrambler, which in turn is controlled by a 
host computer. The photocurrent is sampled and converted to 
digital every 10 ns. For increased accuracy, conversion results 
are averaged over 164 s (16384 samples). In order to assess 
measurement accuracy, manual polarization transformers are 
inserted before and behind the polarization scrambler and 
before the photodetector. These are not needed in practice. 

For each measurement, the same sequence of 32768 
scrambler settings is applied, one every 328 s, and the 
resulting averaged intensity is measured in the second half of 
this interval. Measurement (10.7 s) and data transfer to the 
host need together 30 s. The 32768 test polarizations are 
generated by equispaced time-discrete rotation steps of 3 
quarterwave plates (QWP), 1 halfwave plate (HWP) and 3 
more QWPs in the electrooptic polarization scrambler 
(Table 1). The HWP rotates fastest and completes 4096 
electrooptic rotation periods in 8 steps each. QWP5 rotates 
slowest and completes 1 period in 32768 steps. Rotation 
speeds differ by factors equal to powers of 4. All waveplates 
start from different orientations.   

To start with, the 32768 test polarizations were recorded 
with our polarimeter. The degree-of-polarization of their mean 
was 0.015. The eigenvalues of the covariance matrix were 
computed without prior subtraction of the mean in order to 
obtain an upper limit for the fundamental error. The 
eigenvalues, 0.3294, 0.3313 and 0.3393, resulted in 

minmax ss = 1.0148 and a fundamental 0.74% relative 

error of small PDL values in dB. The polarimeter was used 
only to investigate the achievable accuracy, not for PDL 
measurement. 

In total we have characterized 6 different PDL elements: a 
patchcord, a LiNbO3 component, a short piece of special PMF 
(3M), which becomes polarizing when bent in 3 different 
bending states, and a polarizer (Table 2). Each measurement 
was repeated at least 10 times with different settings of the 

 
 Sqrt(3) scrambling method  Extinction  method  

PDL element Minimum loss  PDL  Minimum loss  PDL  
5m patchcord 0.0325  0.024 dB 0.0186  0.0091 dB 0.032  0.02 dB 0.0104  0.021 dB 

LiNbO3 component (EOSPACE) 1.67  0.05 dB 0.0799  0.018 dB 1.69  0.055 dB 0.0602 0.046 dB 
Weakly bent PMF (3M) 0.39  0.025 dB 0.433  0.041 dB 0.37  0.043 dB 0.428  0.067 dB 

Moderately bent PMF (3M) 0.418  0.02 dB 1.59  0.087 dB  0.41  0.017 dB 1.6  0.091 dB 
Strongly bent PMF (3M) 0.414  0.036 dB 7.3  0.074 dB 0.415  0.023 dB 7.33  0.051 dB 

Polarizer 0.465  0.21 dB 29.85 …  dB 0.4  0.32 dB 50.4  1.5 dB 

Table 2. Mean loss and PDL measurement results for different PDL elements. PDL results in italics are considered to be less accurate. 

Signal wavelength 1550 nm  1300 nm  
Scaling parameter wavelength 1550 nm  1300 nm 1550 nm  1300 nm  

PDL with sqrt(3) scrambling method 0.417  0.018 dB 0.416  0.019 dB 0.144  0.037 dB 0.15  0.037 dB 

Table 3. Measured PDL of weakly bent special PMF (3M) at two wavelengths and with two voltage scaling parameters. 

PC

Polarization
scrambler

Photodiode

Laser

PC

PC

DUTNovoptel EPS10001550/
1300 nm

 
Fig. 7. Setup for PDL measurement with sqrt(3) scrambling and extinction
methods. The dashed manual polarization controllers (PC) are not needed in
practice; they just serve to assess measurement accuracy. 

Waveplate Rotations Start at  
QWP0 210 1/48 
QWP1 26 3/48 
QWP2 22 5/48 
HWP 212 0 

QWP3 28 7/48 
QWP4 24 9/48 
QWP5 20 11/48 

Table 1. Waveplate rotations (in each 10.7 s long measurement) and starting
positions (referred to 1 electrooptic revolution) 
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three manual polarization controllers (PC in Fig. 7), in order to 
show that results almost do not depend on scrambler input 
polarization and the particular polarization at and behind the 
DUT. The indicated error windows contain all these results 
while the associated standard deviations are smaller.  

With the sqrt(3) scrambling method, residual PDL of the 
5m patchcord, connector, manual polarization controllers and 
photodetector is < 0.02 dB. Even the small PDL of the LiNbO3 
component is measured very accurately with errors < 0.02 dB. 
The PDL error for the strongly bent PMF is 0.074 dB. In 
relation to the mean PDL of 7.3 dB this is 1%. Not 
surprisingly, this figure surpasses the fundamental relative 
PDL error of 0.074% derived above.  The polarizer extinction 
is determined inaccurately because for the close-to-ideal 

polarizer it holds 
oSoS

,0
3,0  , which results in strong 

error propagation.  
The extinction method has likewise been implemented: The 

host computer dithers scrambler voltage settings around the 
operation point. Then the operation point is moved in or 
against the direction of the measured gradient. After many 
executed gradient steps either maximum or minimum 
transmission is found. From these, PDL is determined. 

Also for the extinction method, a PDL reference is 
measured, using the scrambler voltage settings found for 
maximum and minimum transmission. This can reduce the 
influence of scrambler PDL. Furthermore, all measurements 
are repeated at least 10 times. At small PDL values, the 
extinction method cannot be considered as reliable because 
maximum and minimum transmissions are falsified by 
scrambler PDL. In Table 2, the results assumed to be less 
accurate (= having larger deviations from the mean) are 
printed in italics. The strength of the extinction method is the 
accurate measurement of large extinctions, even surpassing 
50 dB for the investigated polarizer. Measured extinction was 
double-checked with a hand-held power meter.  

Next, wavelength independence of the sqrt(3) scrambling 
method was assessed. Waveplate retardations scale with 
optical frequency. For 1300 nm rather than 1550 nm 
operation, LiNbO3 electrode voltages are therefore decreased 
by a scaling parameter. That is equivalent to creating a 
different scrambler. With scaling parameters set for 1300 nm, 
the fundamental relative PDL error at 1550 nm (computed 
from maxs , mins ) was 0.7%, no worse than with 1550 nm 

scaling parameters. This is understood from the large number 
of waveplates (6 QWPs, 1 HWP) in the scrambler. 

We have measured the PDL of the weakly bent special PMF 
at both wavelengths with both electrode voltage scaling 
parameters (Table 3). While PDL, as could be expected, 
differs considerably between 1300 nm and 1500 nm, the 
measurements at a given wavelength depend only slightly on 
the scaling parameter, thereby showing wavelength 
independence of the sqrt(3) scrambling method. 

One could argue that this is no strict proof for the 
wavelength-independence of the PDL measurement. But is 
PDL measurement with a polarimeter more truthful in this 
respect? No, because polarimeters are usually calibrated at 

various wavelengths using scrambled input polarizations!  
The same holds for the scrambler characterization which 

gave the covariance matrix eigenvalues and fundamental 
relative error: The characterization, based on a polarimeter, is 
probably not more correct than our or any other scrambler. 
However, the different polarization settings undertaken to 
obtain the error intervals in Table 2 are equivalent to creating 
many different scramblers. The fact that the error intervals 
produced by these are small proves that the principle is sound 
and the measurements are accurate. We consider this proof at 
least as credible as the prediction of low fundamental relative 
error (0.74%) by the polarimetric characterization. 

V. DISCUSSION AND CONCLUSION 

To our knowledge, the proposed usage of input- and output-
referred PDL vectors based on extinction units is new, and so 

is the explicit specification of the rotation matrix W


 and the 
decomposition of a general constant optical element into a 
retarder, a PDL element and a geometric average power 
transmission. Our redefined, extinction-based PDL vectors can 
be added, in particular if they are not small, with much better 
accuracy than the traditional ones based on linear units. 

This allows the plotting of PDL and DGD profiles as 
intuitive graphical displays of the distributed optical device 
structure. For this purpose, the device is modeled by 
alternating DGD and PDL sections and retarders. A Mueller 
matrix measurement in the frequency domain successively 
yields a Jones matrix spectrum, a Jones matrix impulse 
response and, by means of inverse scattering, the device 
structure. 

The sqrt(3) scrambling method has been introduced for 
simple, accurate, low-cost PDL measurement. Even though no 
polarimeter is needed, this technique is independent of 
scrambler input polarization and wavelength. The advantage 
over the all-states method is that essentially all, not just the 
extreme intensity values enter into the calculation and make 
the result accurate. At low PDL values the sqrt(3) scrambling 
method is found to be more accurate than the gradient search 
based extinction method, which is known from polarization 
tracking experiments and has also been implemented.  
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